Project: Claremont Road

Project Ref: 150312

Calculations for: Beam End Repair

Client: Property Repair Systems

Date: March 2015

Proposals

It is proposed to carry out a timber resin end repair to a bressumer beam at Claremont Road, Newcastle

Calculations carried out in conjunction with Timber Repair Systems proposed connection.

References

BS6399-1: 1996 Loading for Buildings - Code of Practice for dead and imposed loads
BS6399-2:1997 Loadings for buildings - Code of practice for wind loads
BS6399-3:1988 Loadings for Buildings - Code of practice for imposed roof loads
BS5268-2:2002 Structural use of timber - Code of practice for permissible stress design
BS449-2:1969 The use of structural steel in building
Structural Engineers Pocket Book, $2^{\text {nd }} E d$. - Cobb
TRADA Resin repairs to Timber Structures: Guidance and selection

Calculations prepared by

Russell Davies
MEng PhD CEng MIStructE

Davies Torres Design Ltd
20 Ann Wicks Road
Frampton on Severn
Gloucestershire
GL2 7HJ

Tel: 01452699945
Mob: 07800578406

Email: russell@daviestorresdesign.co.uk

DCAD LOADS:

Aluow bol due to Lsinadu orginas.
Heare of manney above Beam $=3.8 \mathrm{~m}$.

ICAD LOA aN BEM $=20 \times 0.6 \times 3.8 \times 0.345$
$15.7 \mathrm{kN} / \mathrm{m}$.
Flook Joists anto Berm

$$
\begin{aligned}
& \frac{\square}{\square \underline{\square}} \\
& \text { Frooc Boars } 0.20 \mathrm{kNm} . \\
& \text { Jonst } 1152300.20 \mathrm{k} / \mathrm{m}^{2} \\
& \text { DCancular } 025 \mathrm{~N} / \mathrm{mm} \text {. } \\
& \text { Paster } 030 \mathrm{ka} / \mathrm{m}^{2} \\
& 50.95 \mathrm{kNm} .
\end{aligned}
$$

Span or Joñ $=5.7$ M.

$$
\therefore L O A D \text { in } B C \mathrm{MM}=0.95 \times \frac{57}{2}=\underline{2.70 \mathrm{kN} / \mathrm{m}}
$$

Roor suiforico un Lan

SLATO $\quad 0.60 \mathrm{kN} / \mathrm{m}$
menbencelraa O $10 \mathrm{kmm}^{2}$
Rartes $0.15 \mathrm{tam}^{2}$
Pasice $020 \mathrm{kN} / \mathrm{m}^{2}$
INULATiOS $0.05 \mathrm{kN} / \mathrm{m}$
$\sum 10 \mathrm{k} / \mathrm{m}$.
Alcal 2:Sm widit of lar lots.

$$
\therefore \operatorname{Loo} \text { an Bear }=\quad 110 \times 25=2.75 \mathrm{kNm}
$$

Des latas continues
hat roor at say winoos

Alca 0.5 M hidth or las
\therefore Loto an $3 \mathrm{~cm}=0.80 \times 0.5=0.40 \mathrm{kfn}$

Live LoADs.
Dombich Fioce $\quad 15 \mathrm{k} / \mathrm{m}^{4}$.

$$
\text { Lang on Berm }=15 \times \frac{5.7}{2}=4.3 \mathrm{molm}
$$

SNew LOAS SAC $0.6 \mathrm{kN} / \mathrm{m}^{2}$.

$$
\therefore \text { Lotp ad Beme }=0.6 \times 2.5=1.5 \mathrm{kN} / \mathrm{m}
$$

$\frac{101 A L \text { LOAD a } B \in M}{D C A D ~ L O N D ~ W A L ~}$

$$
15.7 \mathrm{~m} / \mathrm{m}
$$

$$
5.4 \mathrm{kN} / \mathrm{m}
$$

Rcor
$275 \mathrm{k} / \mathrm{m}$.
Fhat Reor
$0.40 \mathrm{AJ} / \mathrm{m}$

$$
\Sigma 242 \mathrm{kNm} .
$$

Davies Torres Design Ltd 20 Ann Wicks Road Frampton on Severn GL2 7HJ	Project Claremont Road				$\begin{array}{ll} \text { Job no. } 150312 \end{array}$	
	Calcs for Beam				Start page no./Revision 5	
	Calcs by RD	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 31 / 03 / 2015 \end{array}$	Checked by	Checked date	Approved by	Approved date

FLITCH BEAM ANALYSIS \& DESIGN TO BS5268-2:2002
TEDDS calculation version 1.5.07

Applied loading

Beam loads

Live Imposed full UDL $10.100 \mathrm{kN} / \mathrm{m}$
Dead
Self Weight
Dead full UDL $24.200 \mathrm{kN} / \mathrm{m}$
Dead self weight of beam $\times 1$

Load combinations

Load combination 1

Support A

Span 1

Support B

Dead $\times 1.00$
Imposed $\times 1.00$
Dead $\times 1.00$
Imposed $\times 1.00$
Dead $\times 1.00$
Imposed $\times 1.00$

Project				Job no.	
	Claremont Road			150312	
Calcs for	Beam			Start page no./Revision	
					6
Calcs by RD	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 31 / 03 / 2015 \end{array}$	Checked by	Checked date	Approved by	Approved date

Analysis results

Maximum moment
Design moment Maximum shear

Design shear
Total load on beam
Reactions at support A
Unfactored dead load reaction at support A
Unfactored imposed load reaction at support A
Reactions at support B
Unfactored dead load reaction at support B
Unfactored imposed load reaction at support B
$M_{\text {max }}=93.003 \mathrm{kNm} \quad \mathrm{M}_{\text {min }}=0.000 \mathrm{kNm}$
$\mathrm{M}=\max \left(\mathrm{abs}\left(\mathrm{M}_{\max }\right), \mathrm{abs}\left(\mathrm{M}_{\text {min }}\right)\right)=93.003 \mathrm{kNm}$
$F_{\text {max }}=80.872 \mathrm{kN} \quad F_{\text {min }}=-80.872 \mathrm{kN}$
$\mathrm{F}=\max \left(\mathrm{abs}\left(\mathrm{F}_{\max }\right), \mathrm{abs}\left(\mathrm{F}_{\text {min }}\right)\right)=80.872 \mathrm{kN}$
$W_{\text {tot }}=161.744 \mathrm{kN}$
$R_{A_{-} \max }=80.872 \mathrm{kN} \quad R_{\mathrm{A}_{-} \min }=80.872 \mathrm{kN}$
$R_{A_{_} \text {Dead }}=57.642 \mathrm{kN}$
$\mathrm{R}_{\mathrm{A} _ \text {Imposed }}=23.230 \mathrm{kN}$
$R_{B_{-} \max }=80.872 \mathrm{kN}$
$R_{B _ \text {min }}=80.872 \mathrm{kN}$
$R_{B_{B} \text { Dead }}=57.642 \mathrm{kN}$
Rb_Imposed $=23.230 \mathrm{kN}$

Timber section details

Breadth of timber sections
Depth of timber sections
Number of timber sections in member
Timber strength class
$b=140 \mathrm{~mm}$
$\mathrm{h}=320 \mathrm{~mm}$
$\mathrm{N}=2$
C24
Steel section details
Breadth of steel plate
$\mathrm{b}_{\mathrm{s}}=20 \mathrm{~mm}$
Depth of steel plate
Number of steel plates in beam
Steel stress
Bolt diameter

Member details

Service class of timber
Load duration
Length of bearing

Section properties

Cross sectional area of beam
Timber section modulus
Steel section modulus
Second moment of area of timber
Second moment of area of steel
$\mathrm{h}_{\mathrm{s}}=320 \mathrm{~mm}$
$\mathrm{N}_{\mathrm{s}}=1$
$p_{y}=165 \mathrm{~N} / \mathrm{mm}^{2}$
$\phi b=12 \mathrm{~mm}$

1
Medium term
$\mathrm{L}_{\mathrm{b}}=400 \mathrm{~mm}$
$\mathrm{A}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}=89600 \mathrm{~mm}^{2}$
$Z_{x t}=N \times b \times h^{2} / 6=4778667 \mathrm{~mm}^{3}$
$Z_{x s}=N_{s} \times b_{s} \times h_{s}{ }^{2} / 6=341333 \mathrm{~mm}^{3}$
$\mathrm{I}_{\mathrm{xt}}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}^{3} / 12=764586667 \mathrm{~mm}^{4}$
$\mathrm{I}_{\mathrm{xs}}=\mathrm{N}_{\mathrm{s}} \times \mathrm{b}_{\mathrm{s}} \times \mathrm{h}_{\mathrm{s}}{ }^{3} / 12=54613333 \mathrm{~mm}^{4}$

Project	Claremont Road			Job no.	
				150312	
Calcs for				Start page no./Revision 7	
Calcs by RD	$\begin{aligned} & \hline \text { Calcs date } \\ & 31 / 03 / 2015 \end{aligned}$	Checked by	Checked date	Approved by	Approved date

Load proportions

Instant deflection under permanent actions $\quad U_{\text {instG }}=7.511 \mathrm{~mm}$
Instant deflection under principal variable action $\quad u_{\text {instQ1 }}=3.027 \mathrm{~mm}$
$\mathrm{k}_{\mathrm{def}}=0.6$
$\psi_{2}=0.3$
Final minimum modulus of elasticity

$$
E_{\min , \text { fin }}=E_{\min } \times\left(u_{\text {instG }}+u_{\text {instQ1 } 1}\right) /\left(u_{\text {instG } G}+u_{\text {instQ1 } 1}+k_{\text {def }} \times\left(u_{\text {instG }}+\psi_{2} \times u_{\text {instQ1 } 1}\right)\right)=4867 \mathrm{~N} / \mathrm{mm}^{2}
$$

Proportion of applied load in timber $\quad \mathrm{k}_{\mathrm{t}}=\mathrm{E}_{\text {mean }} \times \mathrm{I}_{\mathrm{xt}} /\left(\mathrm{E}_{\text {mean }} \times \mathrm{I}_{\mathrm{xt}}+\mathrm{E}_{s 5950} \times \mathrm{I}_{\mathrm{xs}}\right)=0.424$
Proportion of applied load in steel $\quad \mathrm{k}_{\mathrm{s}}=1.1 \times \mathrm{E}_{\mathrm{s} 5950} \times \mathrm{I}_{\mathrm{xs}} /\left(\mathrm{E}_{\text {min,fin }} \times \mathrm{I}_{\mathrm{xt}}+\mathrm{E}_{\mathrm{s} 5950} \times \mathrm{I}_{\mathrm{xs}}\right)=0.826$

Modification factors

Duration of loading - Table 17
$\mathrm{K}_{3}=1.25$
Bearing stress - Table 18
$\mathrm{K}_{4}=1.00$
Total depth of member - cl.2.10.6
$\mathrm{K}_{7}=0.81 \times\left(\mathrm{h}^{2}+92300 \mathrm{~mm}^{2}\right) /\left(\mathrm{h}^{2}+56800 \mathrm{~mm}^{2}\right)=0.99$
Load sharing - cl.2.9
$\mathrm{K}_{8}=1.00$
Lateral support - cl.2.10.8
No lateral support
Permissible depth-to-breadth ratio - Table 19
2.00

Actual depth-to-breadth ratio
$h /\left(N \times b+N_{s} \times b_{s}\right)=1.07$
PASS - Lateral support is adequate
Compression perpendicular to grain
Permissible bearing stress (no wane) $\quad \sigma_{c _ \text {adm }}=\sigma_{c p 1} \times \mathrm{K}_{3} \times \mathrm{K}_{4} \times \mathrm{K}_{8}=3.000 \mathrm{~N} / \mathrm{mm}^{2}$
Applied bearing stress
$\sigma_{c _a}=R_{B_{B} \max } /\left(\mathrm{N} \times \mathrm{b} \times \mathrm{L}_{\mathrm{b}}\right)=0.722 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{c} _a} / \sigma_{\mathrm{c} _ \text {adm }}=0.241$
PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permissible bending stress
Applied timber bending stress

Applied steel bending stress
PASS - Timber bending stress is less than permissible timber bending stress
$\sigma_{\mathrm{m} _ \text {__s }}=\mathrm{k}_{\mathrm{s}} \times \mathrm{M} / \mathrm{Z}_{\mathrm{xs}}=224.948 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {m_a_s }} / p_{y}=1.363$
FAIL - Steel bending stress exceeds permissible steel bending stress

Check beam in shear

Permissible shear stress
Applied shear stress
$\sigma_{\mathrm{m} _ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=9.287 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m} _a}=\mathrm{k}_{\mathrm{t}} \times \mathrm{M} / Z_{\mathrm{xt}}=8.261 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m} _a} / \sigma_{\mathrm{m} _ \text {adm }}=0.890$
$\tau_{\mathrm{adm}}=\tau \times \mathrm{K}_{2 \mathrm{~s}} \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.888 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}}=3 \times \mathrm{k}_{\mathrm{t}} \times \mathrm{F} /(2 \times \mathrm{A})=0.575 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}} / \tau_{\mathrm{adm}}=0.648$
PASS - Shear stress within permissible limits

Deflection

Modulus of elasticity for deflection
Permissible deflection
Bending deflection
Shear deflection
$E=E_{\text {mean }}=10800 \mathrm{~N} / \mathrm{mm}^{2}$
$\delta_{\text {adm }}=\min \left(14 \mathrm{~mm}, 0.003 \times \mathrm{L}_{\mathrm{s} 1}\right)=13.800 \mathrm{~mm}$
$\delta_{\text {b_s } 1}=10.538 \mathrm{~mm}$
$\delta_{\mathrm{v} _ \text {s } 1}=1.845 \mathrm{~mm}$

Davies Torres Design Ltd 20 Ann Wicks Road Frampton on Severn GL2 7HJ	Project Claremont Road				Job no.150312	
	Calcs for				Start page no./Revision 8	
	Calcs by RD	Calcs date $31 / 03 / 2015$	Checked by	Checked date	Approved by	Approved date

Total deflection
$\delta_{\mathrm{a}}=\delta_{\mathrm{b} _ \text {_s }}+\delta_{\mathrm{v} _ \text {s } 1}=12.383 \mathrm{~mm}$
$\delta_{a} / \delta_{\text {adm }}=0.897$
PASS - Total deflection is less than permissible deflection
Flitch plate bolting requirements
Total load on beam
$W_{\text {tot }}=161.744 \mathrm{kN}$
Total load taken by steel
Basic bolt shear load - Table 71
$W_{s}=k_{s} \times W_{\text {tot }}=133.534 \mathrm{kN}$
$\mathrm{V}_{90}=3.520 \mathrm{kN}$
$N_{\text {int }}=\left(N+N_{s}\right)-1=2$
Number of bolts required at supports
$N_{\text {be }}=\max \left(k_{s} \times R_{B_{B} \max } /\left(N_{\text {int }} \times V_{90}\right), 2\right)=9.484$
Limiting bolt spacing
Maximum bolt spacing
$S_{\text {limit }}=\min (2.5 \times h, 600 \mathrm{~mm})=600 \mathrm{~mm}$

Minimum number of bolts along length of beam
$S_{\text {max }}=475 \mathrm{~mm}$
$\mathrm{N}_{\mathrm{bl}}=\mathrm{W}_{\mathrm{s}} /\left(\mathrm{N}_{\text {int }} \times \mathrm{V}_{90}\right)=18.968$

- Provide a minimum of 10 No. 12 mm diameter bolts at each support
- Provide a minimum of 19 No. 12 mm diameter bolts staggered 80 mm alternately above and below the centre line

Minimum bolt spacings

Minimum end spacing
Minimum edge spacing
Minimum bolt spacing
Minimum washer diameter
Minimum washer thickness
$S_{\text {end }}=4 \times \phi_{b}=48 \mathrm{~mm}$
$S_{\text {edge }}=4 \times \phi_{b}=48 \mathrm{~mm}$
$S_{\text {bolt }}=4 \times \phi_{b}=48 \mathrm{~mm}$
$\phi_{w}=3 \times \phi_{b}=36 \mathrm{~mm}$
$\mathrm{t}_{\mathrm{w}}=0.25 \times \phi_{\mathrm{b}}=3 \mathrm{~mm}$

Carromont Ran
Trom boan Asalisis, it is Clak tmat Tre Bean il AT OR close to capacity

Liteck Rein keatir bo fure capacimy of timpde.
Benrina casacir of Timper $m_{c}=K_{3} k_{7} K_{8} \sigma E$

$$
M=\quad 0.99 \times 7.5 \times\left(2.39 \times 10^{6}\right) \times 10^{-6}
$$

$$
=17.75 \mathrm{k} \mathrm{~m} \text { Lank } 7 \text { tem } .
$$

Bcam Rearir Proparal

$$
\begin{aligned}
& K_{3}=10 \quad \text { Las . Tien Lotp } \\
& K_{7}=0.99 \text { be } 3 \mathrm{cmm} \text { Oce } 7_{1 M E E} \\
& V_{8}=1.0 \text { No coas Shatidy } \\
& \sigma=7.5 \mathrm{NMm}^{2} \quad \text { प24 } 71 \mathrm{MBCe} \\
& z=\frac{3 d^{4}}{6}=\frac{140 \times 320^{2}}{6} \\
& =2.39 \times 10^{6} \mathrm{~mm}^{3}
\end{aligned}
$$

Estaslidh Beam Papetio foe Desian.
competion.

Assume tonsion is suppocico BY bRes any.

ThuE MOMEVIS ABON NQuTRE AXNS

$$
\begin{aligned}
& \frac{b x^{2}}{2}-A_{s}^{\prime}(x-d)+n_{s c} A_{s}^{\prime}\left(x-d^{\prime}\right)=A_{s c} A_{S_{2}}\left(d_{2}-x\right) \\
& T \Lambda_{s c} A_{s_{1}}\left(d_{1}-x\right) \times\left(\frac{d_{1}-\lambda}{d_{2}-\lambda}\right) \\
& \text { Whate } n_{\text {fe }}=\frac{E_{s}}{E_{t}}=\frac{205000}{10800} \\
& =19
\end{aligned}
$$

insertina Valucs nio Gevarion to Sovic.

$$
A_{s}^{\prime}=A_{s_{1}}=A_{s_{2}}=\frac{\pi \times 16^{2}}{4} \times 3=603 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
& \frac{140 \times x^{2}}{2}-603(x-50)+19 \times 603(x-50) \\
& =19 \times 603(270-x)+19 \times 603 \times(200-x) \times\left(\frac{200-\lambda}{270-x}\right)
\end{aligned}
$$

$$
70 x^{2}-603 x+30150+11457 x-572850
$$

$$
=3093390-11457 x+2291400-11457 x\left(\frac{200-x}{270-z}\right)
$$

$$
\begin{aligned}
& 70 x^{2}+10854 x-542700=5384790-11457 x-11457 x\left(\frac{200-x}{27 x}\right) \\
& 70 x^{2}+223112-5927490+11457 x\left(\frac{200-x}{270-x}\right)=0 .
\end{aligned}
$$

Solve ro $x-x=158 \mathrm{~mm}$.

$x=$	100	120	140	160	150	157	158	157.5
$70 x^{\wedge} 2$	700000	1008000	1372000	1792000	1575000	1725430	1747480	1736438
$22311 x$	2231100	2677320	3123540	3569760	3346650	3502827	3525138	3513983
-5927490	-5927490	-5927490	-5927490	-5927490	-5927490	-5927490	-5927490	-5927490
	673941.2	733248	740298.5	666589.1	716062.5	684479.7	678827.3	681691.5
Sum.	-2322449	-1508922	-691652	100859.1	-289778	-14753.3	23955.25	4621.5

Secent ifumar or Area of Trantrienco Secicon

$$
\begin{aligned}
I_{u} & =\frac{b x^{3}}{3}+\left(n_{5}-1\right) A_{s}\left(x-d^{\prime}\right)^{2}+n_{s c} A_{s 1}\left(d_{1}-x\right)^{2}+n_{s} A_{s_{2}}\left(d_{2}-x\right)^{2} \\
& =\frac{140 \times 158^{3}}{3}+(19-1) 603 \times 118^{2}+19 \times 603(42)^{2}+19 \times 603\left((12)^{2}\right. \\
& =184 \times 10^{6}+126.6 \times 10^{6}+20.2 \times 10^{6}+143.7 \times 10^{6} \\
& =474.5 \times 10^{6} \mathrm{num}^{4} .
\end{aligned}
$$

Cheek Maximum Stren in Timbee (Lomrestion)

$$
\begin{aligned}
\sigma_{c} & =\frac{M_{x}}{I_{n}} \\
& =\frac{17 \cdot 75 \times 10^{6} \times 158}{474.5 \times 10^{6}} \\
& =5.91 \mathrm{Nhm}^{2} \quad<7.5 \mathrm{Nm}^{2} \quad \frac{9 k}{=}
\end{aligned}
$$

Stras in Tenslle Rensurcemat

$$
\begin{aligned}
\sigma_{c} & =\frac{\Lambda_{s c} M\left(d_{2}-x\right)}{I} \\
& =\frac{19 \times 17.75 \times 10^{6}}{474.5 \times 10^{6}} \times(270-158) \\
& =\frac{796 \mathrm{Nkm}^{2}}{}<270 \mathrm{Whm}^{2} \quad \frac{04}{}
\end{aligned}
$$

$$
\text { Foece in } \begin{aligned}
B_{A C}= & \sigma A=796 \times\left(\frac{\pi \times 10^{2}}{4}\right) \times 10^{-3} \\
& =16.0 \mathrm{kN} .
\end{aligned}
$$

CMeu Chpaties or Resis Connezalion
Stecos tren fuaton of ko.

$$
\begin{aligned}
& \text { Surfare Auca of Bae timber=aDL } \\
& =\pi x 16 \times 400 \\
& -20106 \mathrm{~mm}^{\mathrm{k}} \text {. }
\end{aligned}
$$

Shicar Stran as Sufftee or $S_{k} \rightarrow$ Lenin

$$
\tau=\frac{F}{A}=\frac{16+10^{3}}{2010^{6}}=0.80 \mathrm{~N} / \mathrm{mm}^{2} .<40 . \mathrm{Vmm}^{2} \mathrm{al}
$$

Check sind 5 rean ar Revis iwho Timber
Hoce Diamera $=$ Ro dianeze +2 mm

$$
\begin{aligned}
& \text { - } \int_{\text {Veance }} A k a=\pi(D+2) L \\
& =\pi(18) \times 400 \\
& =22619 \mathrm{~mm}^{2}
\end{aligned}
$$

Stica Sries $r=\frac{F}{A}=\frac{16 \times 10^{3}}{22619}=0.71 \mathrm{~N}_{\text {/um }}$
Aroundie Smear Stress n C24 Timbea PAeftwe

$$
\text { To GRaN }=0.71 \mathrm{Nann}^{2} \quad \underline{ }
$$

Concluion.

1. Prueosed bar fositions and gmbemeat Lenkith hee Aceatable.

Appendix

Property Repair Systems Beam Proposal
Structural Details/Dimensions
Sketch Plan of Building
Photographs
TG6 Resin Data Sheet

TRS TYPE D, 9 SHEAR CONNECTORS, 3 SLOTS, CATEGORY +/-3mm

COMPANY - Proten Services CONTACT - Ray Stokell SITE - Claremont Road ENQ/JOB NO: 4517 DATE - 12/03/2015

BEAM REFERENCE NO. 4	NO. TO REPAIR 1
DIMENSIONS (NOT TO SCALE)	140
WIDTH (mm) (a)	320
DEPTH (mm) (b)	2200
OVERALL LENGTH (mm)	37.5
BASE THICKNESS (mm) (c)	$50 / 120 / 270$
SHEAR CONNECTOR (ROD) CENTRES (mm) (d/e/f)	
SHEAR CONNECTORS (RODS)	800
LENGTH OVERALL (mm) (50:50 EXISTING/TRS)	16
DIAMETER (mm)	9
NUMBER	HT BZP Steel
MATERIAL	3
SLOTS (DO NOT SCALE FROM SKETCH)	115
NUMBER	25
WIDTH (mm) (g) (MAX. FOR RESIN voLuME ALLOwED)	3
DEPTH (mm) (h) (MAX. FOR RESIN voLUME ALLOWED)	

REQUEST FOR STRUCTURAL CALCULATION

BRESSUMER BEAM

WIDTH OF TIMBER (mm)
. 140 mn
DEPTH OF TIMBER (mm)
. $320 \mathrm{~m} \mathrm{\mu}$
LENGTH CUT OFF (including bearing) (m)
...2:2M:

LENGTH OF BEARING (mm)

TIMBER TYPE (softwood or hardwood)
FUNCTION OF COMPONENT (supports what?)

..... SIZE OEROOM (m $\times \mathrm{m}$) \qquad
NUMBER OF BRESSUMERS/SINGLE BEAM

 (Function/Size/Number)

MASONRY ABOVE BRESSUMER - HEIGHT . 8 m.APleox.

- THICKNESS ...3.4.5. mm

ROEF CARRIED ABOVE BRESSUMER -
ROOF COVERINGS \qquad State

LOADING (Domestic/Commercial/Special)
.Domestic
Please attach a Sketch or scale drawing of the room and its floor components.

REF. NO.
DATE

DESCRIPTION

TRS STRUCTURAL RESIN is a versatile, three part epoxy resin grout which can be applied to all types of timber, masonry, concrete and many metals to bond them together, fill voids and inject into slots. It does not contain solvent or water. The product can be poured or injected

Features

- Adhesion greater than the cohesive strength of timber
- Solvent and water free
- Non shrink
- Working pot life: maximum of 15 minutes at 20 degrees C.
- Cure time: 24 hours initial at 20C, 7 days full cure.

TYPICAL USES

TRS - Timber-Resin Splice installation resin. For pouring or injecting into voids in timber, concrete \& masonry and for filling slots. For casting support pads and bearings.

PREPARATION \& METHOD

Cut out all rotted, loose or flaking material and vacuum to remove dust. Abrade or grind as necessary to provide clean, stable surfaces free of all contaminants. Fill any cracks or splits with our Quick Setting Wood Filler Paste, to prevent leakage.
Mix the two liquid components first, then add the powder slowly (wear a dust mask) and mix thoroughly, using a mixing paddle in an electric drill running at low speed.

TRS Structural Resin can be injected using disposable 1 litre cartridge tubes, which require a 1 litre skeleton gun.

Ensure that the temperature is above 5 degrees Centigrade, or pre-warm the materials, otherwise curing may be delayed or prevented.

TECHNICAL DATA

Active Substance

DGEB A/F Epoxy Resins
Other Components
Cycloaliphatic Polyamine Adduct
Mix ratio - Do not vary the mix ratio
Liquids - Base:Hardener = 2:1
Bond Strength/Tensile Shear Adhesion
$12 \mathrm{~N} / \mathrm{mm}^{2}$
Compressive Strength - $81 \mathrm{~N} / \mathrm{mm}^{2}$
Tensile Strength - $22 \mathrm{~N} / \mathrm{mm}^{2}$
Flexural Strength - $42 \mathrm{~N} / \mathrm{mm}^{2}$
Flexural Modulus - $5720 \mathrm{~N} / \mathrm{mm}^{2}$
Specific Gravity - 1.53
Static Modulus of Elasticity
$\mathrm{E}_{\mathrm{t}} 17.235 \mathrm{KN} / \mathrm{mm}^{2}$
Young's Modulus $>17,000 \mathrm{~N} / \mathrm{mm}^{2}$
Aggressivity to other materials
No known aggressivity

Classification

Irritant \& corrosive

Colour

Mid Grey
Property Repair Systems - 01626331351
Unit 3, Olympus Business Park, TQ12 2SN
DCM - 06/13

