

Davies Torres Design Ltd

20 Ann Wicks Road Frampton on Severn Gloucestershire GL2 7HJ

01452 699 945

Project: Claremont Road

Project Ref: 150312

Calculations for: Beam End Repair

Client: Property Repair Systems

Date: March 2015

Proposals

It is proposed to carry out a timber resin end repair to a bressumer beam at Claremont Road, Newcastle

Calculations carried out in conjunction with Timber Repair Systems proposed connection.

References

BS6399-1: 1996 Loading for Buildings – Code of Practice for dead and imposed loads
BS6399-2:1997 Loadings for buildings – Code of practice for wind loads
BS6399-3:1988 Loadings for Buildings – Code of practice for imposed roof loads
BS5268-2:2002 Structural use of timber – Code of practice for permissible stress design
BS449-2:1969 The use of structural steel in building
Structural Engineers Pocket Book, 2nd Ed. - Cobb
TRADA Resin repairs to Timber Structures: Guidance and selection

Calculations prepared by

Russell Davies MEng PhD CEng MIStructE

Davies Torres Design Ltd 20 Ann Wicks Road Frampton on Severn Gloucestershire GL2 7HJ

Tel: 01452 699945 Mob: 07800 578406

Email: russell@daviestorresdesign.co.uk

Cit	Her	ionit	lo	છ.
		1- 11		

2

MARCHZUIS.

N N	1 ASONR'	r over BGM 31	ASMM THACK. C	20 km/m ³ .	
4	LLOLI à	602 DUE TO LSINOCA	· 01641245.		
H	C1041 0i	5 MAJONRY ABOVE K	26AM = 3.2	8m,	
	DCAD	Long as Bern =	20 × 0.6 × 3	3.8×0.345	
			IS.7 KJM		
			7	•	
4	Look	JOISTS ONTO BEAM			
			FLODE BOARS	0.20 km	
		NA -	JOIN 75+230		
		WWW X HAN/A	DCADEN, SA		
			PLASTER		
· · · · · · · · · · · · · · · · · · ·				0.95 km	
		PAN OH JONZY = S.			
	r .	. LOND ON BOM =	0.93x 5.7	$= \frac{2^{\circ} \neq 0 R N M}{4}$	
Α					
K	ODF S	VIPOLICO ON LIAU			
				0.60 mm	
			Menskake/Feer		
			RAFTCES	0'15 tom:	
			PLASTER	0·20 2/m-	
			INJULATION	0.05 20/11-	
				5 1.10 by/m.	
	Auc	2.5m Width OF	Loix Loas.		
		. LOPO 62 BEAM	= 1.10 * 2	25 = 2.75	

()	Project	Claremo	ont Road		Job no. 150	312
Davies Torres Design Ltd 20 Ann Wicks Road	Calcs for	Ве	am		Start page no./Re	vision 6
Frampton on Severn GL2 7HJ	Calcs by RD	Calcs date 31/03/2015	Checked by	Checked date	Approved by	Approved date

Analysis results

Maximum moment Design moment Maximum shear Design shear Total load on beam Reactions at support A Unfactored dead load reaction at support A Unfactored imposed load reaction at support A Reactions at support B Unfactored dead load reaction at support B

Unfactored imposed load reaction at support B

 $\begin{array}{ll} M_{max} = 93.003 \ kNm & M_{min} = 0.000 \ kNm \\ M = max(abs(M_{max}),abs(M_{min})) = 93.003 \ kNm \\ F_{max} = 80.872 \ kN & F_{min} = -80.872 \ kN \\ F = max(abs(F_{max}),abs(F_{min})) = 80.872 \ kN \\ W_{tot} = 161.744 \ kN \\ R_{A_max} = 80.872 \ kN & R_{A_min} = 80.872 \ kN \\ R_{A_max} = 80.872 \ kN & R_{A_min} = 80.872 \ kN \\ R_{A_max} = 80.872 \ kN & R_{B_min} = 80.872 \ kN \\ R_{B_max} = 80.872 \ kN & R_{B_min} = 80.872 \ kN \\ R_{B_max} = 57.642 \ kN \\ R_{B_max} = 57.642 \ kN \\ R_{B_max} = 80.872 \ kN & R_{B_min} = 80.872 \ kN \\ R_{B_min} = 23.230 \ kN \\ \end{array}$

Timber section details

Breadth of timber sections Depth of timber sections Number of timber sections in member Timber strength class

Steel section details

Breadth of steel plate Depth of steel plate Number of steel plates in beam Steel stress Bolt diameter

Member details

Service class of timber Load duration Length of bearing

Section properties

Cross sectional area of beam
Timber section modulus
Steel section modulus
Second moment of area of timber
Second moment of area of steel

φ_b = 12 mm

1 Medium term

b = 140 mm h = 320 mm

b_s = 20 mm h_s = 320 mm

 $p_y = 165 \text{ N/mm}^2$

N = 2

 $N_s = 1$

C24

 $L_b = 400 \text{ mm}$

$$\begin{split} &A = N \times b \times h = 89600 \ mm^2 \\ &Z_{xt} = N \times b \times h^2 \ / \ 6 = 4778667 \ mm^3 \\ &Z_{xs} = N_s \times b_s \times h_s^2 \ / \ 6 = 341333 \ mm^3 \\ &I_{xt} = N \times b \times h^3 \ / \ 12 = 764586667 \ mm^4 \\ &I_{xs} = N_s \times b_s \times h_s^3 \ / \ 12 = 54613333 \ mm^4 \end{split}$$

	Claren	Claremont Road			Job no. 150312			
Davies Torres Design Ltd	Calcs for				Start page no./I	Revision		
20 Ann Wicks Road	В	Beam			7			
Frampton on Severn GL2 7HJ	Calcs by RD	Calcs date 31/03/2015	Checked by	Checked date	Approved by	Approved dat		
Load proportions								
Instant deflection under permai		UinstG = 7.5	11 mm					
Instant deflection under princip	al variable acti)27 mm					
		$k_{def} = 0.6$						
<u> </u>		$\psi_2 = 0.3$						
Final minimum modulus of elas	-	_				4007 NV		
		$\Xi_{\min} \times (U_{instG} + U_{inst})$				= 4867 N/mi		
Proportion of applied load in tin				$I_{xs} + E_{S5950} \times I_{xs}) =$				
Proportion of applied load in st	eel	$K_s = 1.1 \times$	$E_{S5950} \times I_{xs} / (E_n$	$_{\rm min,fin} imes {\rm I}_{\rm xt}$ + E _{S5950}	$(\times I_{xs}) = 0.826$			
Modification factors								
Duration of loading - Table 17		K ₃ = 1.25						
Bearing stress - Table 18		K ₄ = 1.00						
Total depth of member - cl.2.10	0.6		< (h² + 92300 n	nm²) / (h² + 5680	0 mm²) = 0.99			
Load sharing - cl.2.9		$K_8 = 1.00$	$K_8 = 1.00$					
Lateral support - cl.2.10.8								
No lateral support								
Permissible depth-to-breadth ra	atio - Table 19	2.00						
Actual depth-to-breadth ratio	h / (N × b ·	+ N₅ × b₅) = 1.0		Lateral suppo	ort is adequa			
Compression perpendicular	o grain							
Permissible bearing stress (no	wane)	$\sigma_{c_{adm}} = \sigma_{c}$	$_{\rm p1} imes {\sf K}_3 imes {\sf K}_4 imes {\sf K}_4$	K ₈ = 3.000 N/mm ²	2			
Applied bearing stress		$\sigma_{c_a} = R_{B_r}$	$_{\rm max}$ / (N × b × L _b)) = 0.722 N/mm ²				
			$\sigma_{c_a} / \sigma_{c_adm} = 0.241$ pressive stress is less than permissible compressive stress at bearing					
	5 - Applied co	mpressive stres	s is less than	permissible col	mpressive str	ess at beari		
Bending parallel to grain				0.007.01/ 2				
Permissible bending stress		_		8 = 9.287 N/mm ²				
Applied timber bending stress			$\sigma_{m_a} = k_t \times M / Z_{xt} = 8.261 \text{ N/mm}^2$ $\sigma_{m_a} / \sigma_{m_adm} = 0.890$					
					aibla timbay b	anding atua		
Applied steel bending stress	PAS	S - Timber bend	-	-	sible limber b	enang stre		
Applied steel bending stress			$\sigma_{m_a_s} = k_s \times M / Z_{xs} = 224.948 \text{ N/mm}^2$					
		•	$\sigma_{m_a_s} / p_y = 1.363$ FAIL - Steel bending stress exceeds permissible steel bending stress					
Ohaalahaan in ahaan						enang ene		
Check beam in shear Permissible shear stress				0 000 NI/mm2				
			$\begin{split} \tau_{adm} &= \tau \times K_{2s} \times K_3 \times K_8 = 0.888 \text{ N/mm}^2 \\ \tau_a &= 3 \times k_t \times F \ / \ (2 \times A) = 0.575 \text{ N/mm}^2 \end{split}$					
Applied shear stress				0.575 N/IIIII-				
		τ_a / τ_{adm} =		ASS - Shear stre	es within neri	nissihle lim		
Deflection			r A	ile - Unear Sile				
Deflection Modulus of elasticity for deflect	ion	F _ F	= 10800 N/mm ²	2				
Permissible deflection					mm			
			$\delta_{adm} = min(14 \text{ mm}, 0.003 \times L_{s1}) = 13.800 \text{ mm}$					
Bending deflection		$O_{b s1} = 10.$	$\delta_{b_{s1}} = 10.538 \text{ mm}$ $\delta_{v_{s1}} = 1.845 \text{ mm}$					
Shear deflection		_						

	Project	Clarem	Job no. 150312					
Davies Torres Design Ltd	Calcs for	Calcs for Beam				Start page no./Revision 8		
Frampton on Severn GL2 7HJ	Calcs by RD	Calcs date 31/03/2015	Checked by	Checked date	Approved by	Approved date		
Total deflection		$\delta_a = \delta_{b_s1} +$	δ _{v_s1} = 12.383	8 mm				
		δ_a / δ_{adm} = 0).897					
		PA	ASS - Total de	eflection is less	than permissi	ible deflection		
Flitch plate bolting requirem	nents							
Total load on beam	$W_{tot} = 161.$	W _{tot} = 161.744 kN						
Total load taken by steel	$W_s = k_s \times V$	$W_s = k_s \times W_{tot} = 133.534 \text{ kN}$						
Basic bolt shear load - Table	71	v ₉₀ = 3.520	v ₉₀ = 3.520 kN					
Number of interfaces	Number of interfaces		$N_{int} = (N + N_s) - 1 = 2$					
Number of bolts required at su	Number of bolts required at supports		$N_{be} = max(k_s \times R_{B_{max}} / (N_{int} \times v_{90}), 2) = 9.484$					
Limiting bolt spacing		S _{limit} = min($S_{\text{limit}} = \text{min}(2.5 \times \text{h}, 600 \text{ mm}) = 600 \text{ mm}$					
Maximum bolt spacing		S _{max} = 475	S _{max} = 475 mm					
Minimum number of bolts along length of beam		$N_{bl} = W_s / ($	$N_{bl} = W_s / (N_{int} \times v_{90}) = 18.968$					
- Provide a minimum of 10 No	o.12 mm diameter	r bolts at each si	upport					
- Provide a minimum of 19 No	o.12 mm diameter	r bolts staggered	80 mm alterr	nately above and	below the cent	tre line		
Minimum bolt spacings								
Minimum end spacing	$S_{end} = 4 \times 0$	$S_{end} = 4 \times \phi_b = 48 \text{ mm}$						

Minimum end spacing	$S_{end} = 4 \times \varphi_b = 48 \text{ mm}$
Minimum edge spacing	$S_{\text{edge}} = 4 \times \phi_{\text{b}} = 48 \text{ mm}$
Minimum bolt spacing	$S_{\text{bolt}} = 4 \times \varphi_{\text{b}} = 48 \text{ mm}$
Minimum washer diameter	$\varphi_w = 3 \times \varphi_b = 36 \ mm$
Minimum washer thickness	$t_w = 0.25 \times \varphi_b = 3 \ mm$

MARCH 2015

CLAREMONT ROND

FROM BOAM ANALISU, IT IS CLOCK TRAT THE BEAN U AT OR CLOSE TO CAPACITY CHECK REIN REPAIR FOR FULL CAPACITY OF TIMBER. BENJING CAPACITY OF TIMFER MC = K3 K7 K80 Z K3 = 1-0 Lovin Them Long K7 = 0.99 For 320m DGGP TIMBER K8 = 1.0 NO LOAD STARING J = 7.5 NMM2 C24 TIMBER Z: bd = 140×3202 $= 2.39 \times 10^{4} \text{ Mm}^{3}$ $M_{c} = 0.99 \times 1.5 \times (2.39 \times 10^6) \times 10^{12}$ 17.75 kJm Long TERM. BOM REPAIR PROPOSAL Ð. 0 0 150 320 O -0 Ø 70 16 ¢ BARS 0 0 0 50 ᡟ ¥ 140

CLAREMONT ROAD MARCHZOIS CHGer MAXIMUM STREW IN TIMBER (COMPRESSION) Via Ma Ic = 17.75×106×158 474.5×106 5.91 Norm2 < 7.5 Norm2. Ou STREW in TENSILE REINFORCEMENT $\frac{\nabla_{z} = \Lambda_{z} M (d_{z} - z)}{T}$ $\frac{19 \times 17.75 \times 10^6}{474.5 \times 10^6} \times (270 - 58)$ $\frac{474.5 \times 10^6}{79.6 \text{ Mun}^2} < 270 \text{ Mun}^2$ OK $for ce in Bar = TA = 796x \left(\frac{11\times10^2}{4}\times10^3\right)$ 16.0 kJ 3 CHELL CAPPETTIES OF RESIS CONNECTION Steeds Fron Pull-on of Rop. SURFACE AREA OF BAR IN TIMBER = MDL = 17x16x400 - 20106 Nm -. SHOOR STREES ON SURFACE OF SAR -> RES.N $2 = \overline{6} = \frac{16 \times 10^3}{20106} = 0.80 \text{ Mm}^2$. < 40.700° . Of

12

CLARGNON7	kans	MARCY Zeis.
CHECU Savo		
Hore I	IAMETOR = ROD DIAMETOR + 2mm	
: Sure	rce Acen = rr(p+2)L	
	= TT (18) ×40	
· · · · · · · · · · · · · · · · · · ·	$= \frac{22619 \text{ mm}}{2}$	

SHERK STRESS $2 = F = \frac{16 \times 10^3}{4} = \frac{0.71}{22619}$

ALCONTRAC STRESS IN C24 TIMBER PARAMEL TO GRAIN = 0.71 Nume and

BY EXAMINATION, TIMBER SLETS IN EXISTING TIMBER PROJUE LARGER SHEAR AREA, THEREFORE WILL BE ALLEPIPELE.

Conclusion.

B

1. PRUPONED BOR POSITIONS AND EMBERMENT LENGTH ARE ACCEPTABLE.

Appendix

Property Repair Systems Beam Proposal Structural Details/Dimensions Sketch Plan of Building Photographs TG6 Resin Data Sheet

TRS TYPE D, 9 SHEAR CONNECTORS, 3 SLOTS, CATEGORY +/-3mm

EXISTING TIMBER TO BE SLOTTED IN SITU

TRS - RODS FACTORY BONDED

BEAM REFERENCE NO. 4	NO. TO REPAIR 1
DIMENSIONS (NOT TO SCALE)	
WIDTH (mm) (a)	140
DEPTH (mm) (b)	320
OVERALL LENGTH (mm)	2200
BASE THICKNESS (mm) (c)	37.5
SHEAR CONNECTOR (ROD) CENTRES (mm) (d/e/f)	50/120/270
SHEAR CONNECTORS (RODS)	
LENGTH OVERALL (mm) (50:50 EXISTING/TRS)	800
DIAMETER (mm)	16
NUMBER	9
MATERIAL	HT BZP Steel
SLOTS (DO NOT SCALE FROM SKETCH)	
NUMBER	3
WIDTH (mm) (g) (MAX. FOR RESIN VOLUME ALLOWED)	115
DEPTH (mm) (h) (MAX. FOR RESIN VOLUME ALLOWED)	25

SCHEMATIC ONLY - NOT TO SCALE ALL PROPOSALS TO BE VERIFIED BY A STRUCTURAL ENGINEER ©D C MOORE 1997

REQUEST FOR STRUCTURAL CALCULATION

BRESSUMER BEAM

WIDTH OF TIMBER (mm)	140mm
DEPTH OF TIMBER (mm)	320.44
LENGTH CUT OFF (including bearing) (m)	<u>2:2m</u>
LENGTH OF BEARING (mm)	HOOMA
TIMBER TYPE (softwood or hardwood)	
FUNCTION OF COMPONENT (supports what?)	
Sufferts ONE STORY ABOUE.	
	<u>6:40</u> ×5.70
NUMBER OF BRESSUMERS/SINGLE BEAM	3. WITH STEEL FRINCH PLATE
TIMBERS RESTING ON BRESSUMER	FLOOR 501575
MASONRY ABOVE BRESSUMER - HEIGHT	BM. APROX
- THICKNES	s. 345mm
ROOF CARRIED ABOVE BRESSUMER	
ROOF COVERINGS	
LOADING (Domestic/Commercial/Special)	DOMESTIC
Please attach a Sketch or scale drawing of the r its floor components.	oom and

CONTACT RAY STORELL

All heights indicated are in metres. (F.H. indicates to certing height)

ProTen

Services

TRS STRUCTURAL RESIN

An Ultra Low Disturbance Building Solution

TRS STRUCTURAL RESIN POUR or INJECT 1.0, 2.5 & 7.5 Litre

DESCRIPTION

TRS STRUCTURAL RESIN is a versatile, three part epoxy resin grout which can be applied to all types of timber, masonry, concrete and many metals to bond them together, fill voids and inject into slots. It does not contain solvent or water. The product can be poured or injected

TYPICAL USES

TRS – Timber-Resin Splice installation resin. For pouring or injecting into voids in timber, concrete & masonry and for filling slots. For casting support pads and bearings.

PREPARATION & METHOD

Cut out all rotted, loose or flaking material and vacuum to remove dust. Abrade or grind as necessary to provide clean, stable surfaces free of all contaminants. Fill any cracks or splits with our Quick Setting Wood Filler Paste, to prevent leakage.

Mix the two liquid components first, then add the powder slowly (wear a dust mask) and mix thoroughly, using a mixing paddle in an electric drill running at low speed.

TRS Structural Resin can be injected using disposable 1 litre cartridge tubes, which require a 1 litre skeleton gun.

Ensure that the temperature is above 5 degrees Centigrade, or pre-warm the materials, otherwise curing may be delayed or prevented.

Features

- Adhesion greater than the cohesive strength of timber
- Solvent and water free
- Non shrink
- Working pot life: maximum of 15 minutes at 20 degrees C.
- Cure time: 24 hours initial at 20C, 7 days full cure.

TECHNICAL DATA

Active Substance DGEB A/F Epoxy Resins **Other Components** Cycloaliphatic Polyamine Adduct Mix ratio - Do not vary the mix ratio Liquids – Base:Hardener = 2:1 Bond Strength/Tensile Shear Adhesion 12 N/mm² **Compressive Strength** - 81 N/mm² Tensile Strength - 22 N/mm² Flexural Strength - 42 N/mm² Flexural Modulus - 5720 N/mm² Specific Gravity - 1.53 Static Modulus of Elasticity E_t 17.235 KN/mm² Young's Modulus >17,000 N/mm² Aggressivity to other materials No known aggressivity Classification Irritant & corrosive Colour Mid Grey

Property Repair Systems - 01626 331351 Unit 3, Olympus Business Park, TQ12 2SN DCM – 06/13